

- #246 in babylonian numerals full#
- #246 in babylonian numerals trial#
- #246 in babylonian numerals series#
Confirmation that this method was indeed used by the Babylonian astronomers comes from Text M (BM 36551+), a very early ephemeris of the last appearances in the evening of Mercury from 424 to 403 BC, computed in three columns according to System A 3.
#246 in babylonian numerals full#
A full ephemeris of a synodic phase of Mercury can then be composed by combining three columns of longitudes computed with 3-synarc step functions, each column starting with a longitude of Mercury one synodic event apart. Using reduced amplitudes of about 14°–25° but keeping the same zone boundaries, the computation of what I will call 3-synarc system A models of Mercury is significantly simplified. This alternative method is based on the fact that after three synodic intervals Mercury returns to a position in the sky which is on average only 17.4° less in longitude. To circumvent this difficulty I propose that the Babylonian scholars used an alternative more direct method to fit System A-type models to the observational data of Mercury.
#246 in babylonian numerals trial#
This complication makes it difficult to understand how the Babylonian scholars managed to construct System A models for Mercury that fitted the observations so well because it requires an excessive amount of computational effort to find the best possible step function in a complicated trial and error fitting process with four or five free parameters. An additional difficulty in the construction of System A step functions is that most amplitudes are larger than the associated zone lengths so that in the computation of the longitudes of the synodic phases of Mercury quite often two zone boundaries are crossed. Because for Mercury positions with respect to Normal Stars can only rarely be determined at its first or last appearance I propose that the Babylonian scholars used the relation Δλ = Δt −3 39,40, which follows from the period relations, to compute synodic arcs of Mercury from the observed synodic time intervals. Of the data required for the construction of an ephemeris synodic time intervals Δt can be directly derived from observed dates but zodiacal longitudes and synodic arcs Δλ must be determined in some other way. To be able to study the way in which the Babylonian scholars constructed their system A models of Mercury from the available observational material I have created a database of synthetic observations by computing the dates and zodiacal longitudes of all first and last appearances and of all stationary points of Mercury in Babylon between 450 and 50 BC. From an analysis of the Babylonian observations of Mercury preserved in the Astronomical Diaries and Planetary Texts we find: (1) that dates on which Mercury reaches its stationary points are not recorded, (2) that Normal Star observations on or near dates of first and last appearance of Mercury are rare (about once every twenty observations), and (3) that about one out of every seven pairs of first and last appearances is recorded as “omitted” when Mercury remains invisible due to a combination of the low inclination of its orbit to the horizon and the attenuation by atmospheric extinction. System A 3 is known from a Procedure Text and from Text M, an Ephemeris of the last evening visibility of Mercury for the years 424 to 403 BC. System A 1 is represented by nine Ephemerides covering the years 190 BC to 100 BC and system A 2 by two Ephemerides covering the years 310 to 290 BC. Three computational systems of Mercury are known, all of system A. Our knowledge of the Babylonian theory of Mercury is at present based on twelve Ephemerides and seven Procedure Texts. In this third and last paper I will study system A theory of the planet Mercury. Papers I and II were devoted to system A theory of the outer planets and of the planet Venus.


#246 in babylonian numerals series#
In this series of papers I attempt to provide an answer to the question how the Babylonian scholars arrived at their mathematical theory of planetary motion.
